Head movements and the optic flow generated during the learning flights of bumblebees.
نویسندگان
چکیده
Insects inform themselves about the 3D structure of their surroundings through motion parallax. During flight, they often simplify this task by minimising rotational image movement. Coordinated head and body movements generate rapid shifts of gaze separated by periods of almost zero rotational movement, during which the distance of objects from the insect can be estimated through pure translational optic flow. This saccadic strategy is less appropriate for assessing the distance between objects. Bees and wasps face this problem when learning the position of their nest-hole relative to objects close to it. They acquire the necessary information during specialised flights performed on leaving the nest. Here, we show that the bumblebee's saccadic strategy differs from other reported cases. In the fixations between saccades, a bumblebee's head continues to turn slowly, generating rotational flow. At specific points in learning flights these imperfect fixations generate a form of 'pivoting parallax', which is centred on the nest and enhances the visibility of features near the nest. Bumblebees may thus utilize an alternative form of motion parallax to that delivered by the standard 'saccade and fixate' strategy in which residual rotational flow plays a role in assessing the distances of objects from a focal point of interest.
منابع مشابه
Minimum viewing angle for visually guided ground speed control in bumblebees.
To control flight, flying insects extract information from the pattern of visual motion generated during flight, known as optic flow. To regulate their ground speed, insects such as honeybees and Drosophila hold the rate of optic flow in the axial direction (front-to-back) constant. A consequence of this strategy is that its performance varies with the minimum viewing angle (the deviation from ...
متن کاملVisual motion-sensitive neurons in the bumblebee brain convey information about landmarks during a navigational task
Bees use visual memories to find the spatial location of previously learnt food sites. Characteristic learning flights help acquiring these memories at newly discovered foraging locations where landmarks-salient objects in the vicinity of the goal location-can play an important role in guiding the animal's homing behavior. Although behavioral experiments have shown that bees can use a variety o...
متن کاملVirtual swimming--breaststroke body movements facilitate vection.
Visually induced illusory self-motion (vection) was facilitated by active breaststroke arm and body movements. Optic flow was generated by having the standing observer make these arm movements, which were detected by Kinect and incorporated into the display. When generated, this optic flow was either expanding (i.e. congruent with the observer's head motion) or contracting (i.e. incongruent wit...
متن کاملVisual gaze control during peering flight manoeuvres in honeybees.
As animals travel through the environment, powerful reflexes help stabilize their gaze by actively maintaining head and eyes in a level orientation. Gaze stabilization reduces motion blur and prevents image rotations. It also assists in depth perception based on translational optic flow. Here we describe side-to-side flight manoeuvres in honeybees and investigate how the bees' gaze is stabilize...
متن کاملBumblebees measure optic flow for position and speed control flexibly within the frontal visual field.
When flying through narrow spaces, insects control their position by balancing the magnitude of apparent image motion (optic flow) experienced in each eye and their speed by holding this value about a desired set point. Previously, it has been shown that when bumblebees encounter sudden changes in the proximity to nearby surfaces - as indicated by a change in the magnitude of optic flow on each...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 217 Pt 15 شماره
صفحات -
تاریخ انتشار 2014